Abstract
The instances of privacy and security have reached the point where they cannot be ignored. There has been a rise in data breaches and fraud, particularly in banks, healthcare, and government sectors. In today’s world, many organizations offer their security specialists bug report programs that help them find flaws in their applications. The breach of data on its own does not necessarily constitute a threat or attack. Cyber-attacks allow cyberpunks to gain access to machines and networks and steal financial data and esoteric information as a result of a data breach. In this context, this paper proposes an innovative approach to help users to avoid online subterfuge by implementing a Dynamic Phishing Safeguard System (DPSS) using neural boost phishing protection algorithm that focuses on phishing, fraud, and optimizes the problem of data breaches. Dynamic phishing safeguard utilizes 30 different features to predict whether or not a website is a phishing website. In addition, the neural boost phishing protection algorithm uses an Anti-Phishing Neural Algorithm (APNA) and an Anti-Phishing Boosting Algorithm (APBA) to generate output that is mapped to various other components, such as IP finder, geolocation, and location mapper, in order to pinpoint the location of vulnerable sites that the user can view, which makes the system more secure. The system also offers a website blocker, and a tracker auditor to give the user the authority to control the system. Based on the results, the anti-phishing neural algorithm achieved an accuracy level of 97.10%, while the anti-phishing boosting algorithm yielded 97.82%. According to the evaluation results, dynamic phishing safeguard systems tend to perform better than other models in terms of uniform resource locator detection and security.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献