A novel approach to detect fraud in Ethereum transactions using stacking

Author:

Md Abdul Quadir1ORCID,Narayanan S. M. Satya Sree1,Sabireen H.1,Sivaraman Arun Kumar1,Tee Kong Fah2ORCID

Affiliation:

1. School of Computer Science and Engineering Vellore Institute of Technology Chennai India

2. Faculty of Engineering and Quantity Surveying INTI International University Nilai Malaysia

Abstract

AbstractEver since Ether is launched as a digital currency, its rise has been rapid. It is currently the second most valuable digital currency in the world. There are more than 1 million transactions happening on the Ethereum network every day, and this number is expected to continue to increase. Due to the increasing number of transactions, fraudulent transactions have also increased, which has resulted in a large amount of money being lost and has also destroyed the livelihoods of many individuals. Due to their similarity to valid transactions, it is extremely difficult to distinguish between them. Additionally, Ethereum's pseudo‐anonymity adds to the difficulty of identifying the parties involved. Since there are millions of transactions every day, it would be difficult to manually verify each one. Therefore, a mechanism for validating these transactions is needed. In this context, this paper proposes a novel approach to detecting fraudulent accounts associated with these transactions by implementing machine learning algorithms among the given set of transactions. We propose a framework for creating a stacking classifier by combining several standalone classification algorithms and creating a meta‐learner based on the output of each base algorithm. The algorithms include Logistic Regression, Naive Bayes, Decision Trees, Random Forests, AdaBoosts, KNNs, SVMs, and Gradient Boosts. As a result of combining these algorithms, a powerful classifier with the ability to detect fraudulent transactions. A variety of machine learning models were trained and evaluated on the test set using various metrics. Based on the results of the individual algorithm the Random Forest algorithm achieved the highest accuracy of 95.47%, followed by Gradient Boosting at 94.61% which is an ensemble algorithm using the boosting technique. The Stacking classifier that combines Multinomial Naive Bayes and Random Forest as the base learners and logistic regression as the Meta learner achieved the highest accuracy of 97.18% with an F1 score of 97.02%. Based on the results of all the stacking models developed, it is concluded that algorithms tend to perform better when combined properly. When compared to the other approaches, the proposed approach has outperformed the others, making it feasible in the real world to detect fraudulent transactions.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection on Blockchain in Financial Fields: A Comprehensive Survey;2024 4th International Conference on Computer Communication and Artificial Intelligence (CCAI);2024-05-24

2. Utilizing Machine Learning and Deep Learning for Predicting Crypto-currency Trends;Salud, Ciencia y Tecnología - Serie de Conferencias;2024-03-11

3. Tracking phishing on Ethereum: Transaction network embedding approach for accounts representation learning;Computers & Security;2023-12

4. EnLEFD‐DM: Ensemble Learning based Ethereum Fraud Detection using CRISP‐DM framework;Expert Systems;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3