A Whale Optimization Algorithm Based Resource Allocation Scheme for Cloud-Fog Based IoT Applications

Author:

Sing Ranumayee,Bhoi Sourav Kumar,Panigrahi Niranjan,Sahoo Kshira SagarORCID,Jhanjhi NzORCID,AlZain Mohammed A.ORCID

Abstract

Fog computing has been prioritized over cloud computing in terms of latency-sensitive Internet of Things (IoT) based services. We consider a limited resource-based fog system where real-time tasks with heterogeneous resource configurations are required to allocate within the execution deadline. Two modules are designed to handle the real-time continuous streaming tasks. The first module is task classification and buffering (TCB), which classifies the task heterogeneity using dynamic fuzzy c-means clustering and buffers into parallel virtual queues according to enhanced least laxity time. The second module is task offloading and optimal resource allocation (TOORA), which decides to offload the task either to cloud or fog and also optimally assigns the resources of fog nodes using the whale optimization algorithm, which provides high throughput. The simulation results of our proposed algorithm, called whale optimized resource allocation (WORA), is compared with results of other models, such as shortest job first (SJF), multi-objective monotone increasing sorting-based (MOMIS) algorithm, and Fuzzy Logic based Real-time Task Scheduling (FLRTS) algorithm. When 100 to 700 tasks are executed in 15 fog nodes, the results show that the WORA algorithm saves 10.3% of the average cost of MOMIS and 21.9% of the average cost of FLRTS. When comparing the energy consumption, WORA consumes 18.5% less than MOMIS and 30.8% less than FLRTS. The WORA also performed 6.4% better than MOMIS and 12.9% better than FLRTS in terms of makespan and 2.6% better than MOMIS and 4.3% better than FLRTS in terms of successful completion of tasks.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3