Joint delay and energy aware dragonfly optimization‐based uplink resource allocation scheme for LTE‐A networks in a cross‐layer environment

Author:

Moses Leeban1ORCID,Sambantham Perarasi1,Faheem Muhammad2ORCID,Ali K Shoukath3ORCID,Khan Arfat Ahmad4

Affiliation:

1. Department of Electronics and Communication Engineering Bannari Amman Institute of Technology Sathyamangalam Tamil Nadu India

2. Department of Computing Science, School of Technology and Innovations University of Vaasa Vaasa Finland

3. Department of Electronics and Communication Engineering Presidency University Bengaluru Karnataka India

4. Department of Computer Science, College of Computing Khon Kaen University Khon Kaen Thailand

Abstract

AbstractThe exponential growth in data traffic from smart devices has led to a need for highly capable wireless networks with faster data transmission rates and improved spectral efficiency. Allocating resources efficiently in a 5G communication system with a huge number of machine type communication (MTC) devices is essential to ensure optimal performance and meet the diverse requirements of different applications. The LTE‐A network offers high‐speed mobile data services and caters to MTC devices and has relatively low data service requirements compared to human‐to‐human (H2H) communications. LTE‐A networks require advanced scheduling schemes to manage the limited spectrum and ensure efficient transmissions. This necessitates effective resource allocation schemes to minimize interference between cells in future networks. To address this issue, a joint delay and energy aware Levy flight Brownian movement‐based dragonfly optimization (DELFBDO)‐based uplink resource allocation scheme for LTE‐A Networks is proposed in this work to optimize energy efficiency, maximize the throughput and reduce the latency. The DELFDO algorithm efficiently organizes packets in both time and frequency domains for H2H and MTC devices, resulting in improved quality of service while minimizing energy consumption. The Simulation results demonstrate that the proposed method increases the energy efficiency by producing the appropriate channel and power assignment for UEs and MTC devices.

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3