LASNet: A Light-Weight Asymmetric Spatial Feature Network for Real-Time Semantic Segmentation

Author:

Chen YuORCID,Zhan WeidaORCID,Jiang Yichun,Zhu Depeng,Guo Renzhong,Xu Xiaoyu

Abstract

In recent years, deep learning models have achieved great success in the field of semantic segmentation, which achieve satisfactory performance by introducing a large number of parameters. However, this achievement usually leads to high computational complexity, which seriously limits the deployment of semantic segmented applications on mobile devices with limited computing and storage resources. To address this problem, we propose a lightweight asymmetric spatial feature network (LASNet) for real-time semantic segmentation. We consider the network parameters, inference speed, and performance to design the structure of LASNet, which can make the LASNet applied to embedded devices and mobile devices better. In the encoding part of LASNet, we propose the LAS module, which retains and utilize spatial information. This module uses a combination of asymmetric convolution, group convolution, and dual-stream structure to reduce the number of network parameters and maintain strong feature extraction ability. In the decoding part of LASNet, we propose the multivariate concatenate module to reuse the shallow features, which can improve the segmentation accuracy and maintain a high inference speed. Our network attains precise real-time segmentation results in a wide range of experiments. Without additional processing and pre-training, LASNet achieves 70.99% mIoU and 110.93 FPS inference speed in the CityScapes dataset with only 0.8 M model parameters.

Funder

Jilin Province Development and Reform Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3