Asymmetric-Convolution-Guided Multipath Fusion for Real-Time Semantic Segmentation Networks

Author:

Liu Jie1,Zhao Bing1,Tian Ming2

Affiliation:

1. School of Measurement and Control Technology and Communication Engineering, Harbin Institute of Technology, Harbin 150001, China

2. China Telecom Heilongjiang Branch, Harbin 150010, China

Abstract

Aiming to provide solutions for problems proposed by the inaccurate segmentation of long objects and information loss of small objects in real-time semantic segmentation algorithms, this paper proposes a lightweight multi-branch real-time semantic segmentation network based on BiseNetV2. The new auxiliary branch makes full use of spatial details and context information to cover the long object in the field of view. Meanwhile, in order to ensure the inference speed of the model, the asymmetric convolution is used in each stage of the auxiliary branch to design a structure with low computational complexity. In the multi-branch fusion stage, the alignment-and-fusion module is designed to provide guidance information for deep and shallow feature mapping, so as to make up for the problem of feature misalignment in the fusion of information at different scales, and thus reduce the loss of small target information. In order to further improve the model’s awareness of key information, a global context module is designed to capture the most important features in the input data. The proposed network uses an NVIDIA GeForce RTX 3080 Laptop GPU experiment on the road street view Cityscapes and CamVid datasets, with the average simultaneously occurring ratios reaching 77.1% and 77.4%, respectively, and the running speeds reaching 127 frames/s and 112 frames/s, respectively. The experimental results show that the proposed algorithm can achieve a real-time segmentation and improve the accuracy significantly, showing good semantic segmentation performance.

Funder

Science and Technology Project of Heilongjiang Provincial Department of Transport OF FUNDER

Publisher

MDPI AG

Reference42 articles.

1. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., and Zhou, Y. (2021). Transunet: Transformers make strong encoders for medical image segmentation. arXiv.

2. ADPNet: Attention based dual path network for lane detection;Ren;J. Vis. Commun. Image Represent.,2022

3. The apolloscape open dataset for autonomous driving and its application;Huang;IEEE Trans. Pattern Anal. Mach. Intell.,2019

4. Long, J., Shelhamer, E., and Darrell, T. (2015, January 7–12). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.

5. Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5–9). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany. Proceedings, Part III 18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3