Abstract
This paper proposes a hybrid machine-translation system that combines neural machine translation with well-developed rule-based machine translation to utilize the stability of the latter to compensate for the inadequacy of neural machine translation in rare-resource domains. A classifier is introduced to predict which translation from the two systems is more reliable. We explore a set of features that reflect the reliability of translation and its process, and training data is automatically expanded with a small, human-labeled dataset to solve the insufficient-data problem. A series of experiments shows that the hybrid system’s translation accuracy is improved, especially in out-of-domain translations, and classification accuracy is greatly improved when using the proposed features and the automatically constructed training set. A comparison between feature- and text-based classification is also performed, and the results show that the feature-based model achieves better classification accuracy, even when compared to neural network text classifiers.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献