Author:
Wu Ning,Jiang Tao,Zhang Lei,Zhou Fang,Ge Fen
Abstract
As a typical artificial intelligence algorithm, the convolutional neural network (CNN) is widely used in the Internet of Things (IoT) system. In order to improve the computing ability of an IoT CPU, this paper designs a reconfigurable CNN-accelerated coprocessor based on the RISC-V instruction set. The interconnection structure of the acceleration chain designed by the predecessors is optimized, and the accelerator is connected to the RISC-V CPU core in the form of a coprocessor. The corresponding instruction of the coprocessor is designed and the instruction compiling environment is established. Through the inline assembly in the C language, the coprocessor instructions are called, coprocessor acceleration library functions are established, and common algorithms in the IoT system are implemented on the coprocessor. Finally, resource consumption evaluation and performance analysis of the coprocessor are completed on a Xilinx FPGA. The evaluation results show that the reconfigurable CNN-accelerated coprocessor only consumes 8534 LUTS, accounting for 47.6% of the total SoC system. The number of instruction cycles required to implement functions such as convolution and pooling based on the designed coprocessor instructions is better than using the standard instruction set, and the acceleration ratio of convolution is 6.27 times that of the standard instruction set.
Funder
National Natural Science Foundation of China
the Fundamental Research Funds for Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献