An Energy-Efficient and Fast Scheme for Hybrid Storage Class Memory in an AIoT Terminal System

Author:

Sun Hao,Chen LanORCID,Hao Xiaoran,Liu Chenji,Ni Mao

Abstract

Conventional main memory can no longer meet the requirements of low energy consumption and massive data storage in an artificial intelligence Internet of Things (AIoT) system. Moreover, the efficiency is decreased due to the swapping of data between the main memory and storage. This paper presents a hybrid storage class memory system to reduce the energy consumption and optimize IO performance. Phase change memory (PCM) brings the advantages of low static power and a large capacity to a hybrid memory system. In order to avoid the impact of poor write performance in PCM, a migration scheme implemented in the memory controller is proposed. By counting the write times and row buffer miss times in PCM simultaneously, the write-intensive data can be selected and migrated from PCM to dynamic random-access memory (DRAM) efficiently, which improves the performance of hybrid storage class memory. In addition, a fast mode with a tmpfs-based, in-memory file system is applied to hybrid storage class memory to reduce the number of data movements between memory and external storage. Experimental results show that the proposed system can reduce energy consumption by 46.2% on average compared with the traditional DRAM-only system. The fast mode increases the IO performance of the system by more than 30 times compared with the common ext3 file system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. APB-tree: An Adaptive Pre-built Tree Indexing Scheme for NVM-based IoT Systems;ACM Transactions on Embedded Computing Systems;2024-07-26

2. Data transmission reduction formalization for cloud offloading-based IoT systems;Journal of Cloud Computing;2023-03-28

3. Nonvolatile Memory Technologies: Characteristics, Deployment, and Research Challenges;Frontiers of Quality Electronic Design (QED);2023

4. Analysis of power-performance trade-offs in DRAM-NVM based hybrid main memory;INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL INTELLIGENCE AND ANALYTICS (ACIA-2022);2023

5. Design of Embedded Intelligent IoT Terminal for Precise Regulation of Integrated Energy;Journal of Physics: Conference Series;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3