Comparison of Predictive Models with Balanced Classes Using the SMOTE Method for the Forecast of Student Dropout in Higher Education

Author:

Flores Vaneza,Heras Stella,Julian VicenteORCID

Abstract

Based on the premise that university student dropout is a social problem in the university ecosystem of any country, technological leverage is a way that allows us to build technological proposals to solve a poorly met need in university education systems. Under this scenario, the study presents and analyzes eight predictive models to forecast university dropout, based on data mining methods and techniques, using WEKA for its implementation, with a dataset of 4365 academic records of students from the National University of Moquegua (UNAM), Peru. The objective is to determine which model presents the best performance indicators to forecast and prevent student dropout. The study aims to propose and compare the accuracy of eight predictive models with balanced classes, using the SMOTE method for the generation of synthetic data. The results allow us to confirm that the predictive model based on Random Forest is the one that presents the highest accuracy and robustness. This study is of great interest to the educational community as it allows for predicting the possible dropout of a student from a university career and being able to take corrective actions both at a global and individual level. The results obtained are highly interesting for the university in which the study has been carried out, obtaining results that generally outperform the results obtained in related works.

Funder

Government of Spain

Generalitat Valenciana

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence to predict pre‐clinical dental student academic performance based on pre‐university results: A preliminary study;Journal of Dental Education;2024-07-30

2. Higher Education Dropout: A Scoping Review;Revista de Gestão Social e Ambiental;2024-06-13

3. Mineração de Dados Educacionais para a Predição de Evasão;Administração: Ensino e Pesquisa;2024-05-31

4. Educational Data Mining for Dropout Prediction: Trends, Opportunities, and Challenges;Revista Brasileira de Informática na Educação;2024-05-20

5. Generative Artificial Intelligence in Latin American Higher Education: A Systematic Literature Review;2024 12th International Symposium on Digital Forensics and Security (ISDFS);2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3