Performance Assessment of Collective Perception Service Supported by the Roadside Infrastructure

Author:

Correia Marco,Almeida JoãoORCID,Bartolomeu Paulo C.ORCID,Fonseca José A.ORCID,Ferreira JoaquimORCID

Abstract

To mitigate road-related problems such as safety and traffic congestion, the evolution towards cooperative communicating technologies and autonomous systems is considered a solution to overcome human physical limitations and the limited perception horizon of on-board sensors. This paper describes the implementation of the Collective Perception Service (CPS) in a real road infrastructure with the goal of providing information to automated vehicles and to a central road operator. The Collective Perception Messages are built by retrieving information from traffic classification radars for local dissemination using ITS-G5 radio technology and for broader access by disseminating the messages into a central entity. The service is improved by applying some rules for optimizing the message dissemination in order to increase radio channel efficiency. The results of the experimental tests showed that the end-to-end delay between the production event of the Collective Perception Message (CPM) and the reception by other ITS stations is within the boundaries defined by ETSI standards. Moreover, the algorithm for message dissemination also shows improvement in the radio channel efficiency by limiting the number of objects disseminated by CPM messages. The developed Collective Perception Service and the road infrastructure are, therefore, a valuable asset to provide useful information for increasing road safety and fostering the deployment of Cooperative, Connected and Automated Mobility (CCAM) applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Cooperative Perception Message Dissemination in Vehicular Networks Through Selective Transmission;2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS);2024-01-03

2. Vehicle Communication Platform to Anything-VehicleCAPTAIN;Studies in Computational Intelligence;2024

3. Using Range-Revocable Pseudonyms to Provide Backward Unlinkability in the Edge;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

4. Positional Accuracy Provided by State-of-the-Art Cooperative Awareness and Collective Perception;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

5. A Roadside and Cloud-Based Vehicular Communications Framework for the Provision of C-ITS Services;Information;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3