Detection of DGA-Generated Domain Names with TF-IDF

Author:

Vranken HaraldORCID,Alizadeh Hassan

Abstract

Botnets often apply domain name generation algorithms (DGAs) to evade detection by generating large numbers of pseudo-random domain names of which only few are registered by cybercriminals. In this paper, we address how DGA-generated domain names can be detected by means of machine learning and deep learning. We first present an extensive literature review on recent prior work in which machine learning and deep learning have been applied for detecting DGA-generated domain names. We observe that a common methodology is still missing, and the use of different datasets causes that experimental results can hardly be compared. We next propose the use of TF-IDF to measure frequencies of the most relevant n-grams in domain names, and use these as features in learning algorithms. We perform experiments with various machine-learning and deep-learning models using TF-IDF features, of which a deep MLP model yields the best results. For comparison, we also apply an LSTM model with embedding layer to convert domain names from a sequence of characters into a vector representation. The performance of our LSTM and MLP models is rather similar, achieving 0.994 and 0.995 AUC, and average F1-scores of 0.907 and 0.891 respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing Deep Neural Networks and Machine Learning for Detecting Malicious Domain Name Registrations;2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS);2024-07-29

2. A review on lexical based malicious domain name detection methods;Annals of Telecommunications;2024-06-13

3. Evading deep learning-based DGA detectors: current problems and solutions.;Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications VI;2024-06-07

4. Word encoding for word-looking DGA-based Botnet classification;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

5. Use of subword tokenization for domain generation algorithm classification;Cybersecurity;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3