Use of subword tokenization for domain generation algorithm classification

Author:

Liew Sea Ran Cleon,Law Ngai FongORCID

Abstract

AbstractDomain name generation algorithm (DGA) classification is an essential but challenging problem. Both feature-extracting machine learning (ML) methods and deep learning (DL) models such as convolutional neural networks and long short-term memory have been developed. However, the performance of these approaches varies with different types of DGAs. Most features in the ML methods can characterize random-looking DGAs better than word-looking DGAs. To improve the classification performance on word-looking DGAs, subword tokenization is employed for the DL models. Our experimental results proved that the subword tokenization can provide excellent classification performance on the word-looking DGAs. We then propose an integrated scheme that chooses an appropriate method for DGA classification depending on the nature of the DGAs. Results show that the integrated scheme outperformed existing ML and DL methods, and also the subword DL methods.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Word encoding for word-looking DGA-based Botnet classification;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3