Regression Model-Based AMS Circuit Optimization Technique Utilizing Parameterized Operating Condition

Author:

Nam Jae-WonORCID,Cho Young-KyunORCID,Lee Youn KyuORCID

Abstract

An analog and mixed-signal (AMS) circuit that draws on machine learning while using a regression model differs in terms of the design compared to more sophisticated circuit designs. Technology structures that are more advanced than conventional CMOS processes, specifically the fin field-effect transistor (FinFET) and silicon-on-insulator (SOI), have been proposed to provide the higher computation performance required to meet various design specifications. As a result, the latest research on AMS design optimization has enabled enormous resource savings in AMS design procedures but remains limited with regard to reflecting the intended operating conditions in the design parameters. Hereby, we propose what is termed a supervised learning artificial neural network (ANN) as a means by which to define an AMS regression model. This approach allows for rapid searches of complex design dimensions, including variations in performance metrics caused by process–voltage–temperature (PVT) changes. The method also reduces the considerable computation expense compared to that of simulation-program-with-integrated-circuit-emphasis (SPICE) simulations. Hence, the proposed AMS circuit design flow generates highly promising output to meet target requirements while showing an excellent ability to match the design target performance. To verify the potential and promise of our design flow, a successive approximation register analog-to-digital converter (SAR ADC) is designed with a 14 nm process design kit. In order to show the maximum single ADC performance (6-bit∼8-bit resolution and few GS/s conversion speed), we have set three different ADC performance targets. Under all SS/TT/FF corners, ±6.25% supply voltage variation, and temperature variation from −40 ∘C to 80 ∘C, the designed SAR ADC using our proposed AMS circuit optimization flow yields remarkable figure-of-merit energy efficiency (approximately 15 fJ/conversion step).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3