Improvement of the Performance of Models for Predicting Coronary Artery Disease Based on XGBoost Algorithm and Feature Processing Technology

Author:

Zhang Shasha,Yuan Yuyu,Yao Zhonghua,Wang Xinyan,Lei Zhen

Abstract

Coronary artery disease (CAD) is one of the diseases with the highest morbidity and mortality in the world. In 2019, the number of deaths caused by CAD reached 9.14 million. The detection and treatment of CAD in the early stage is crucial to save lives and improve prognosis. Therefore, the purpose of this research is to develop a machine-learning system that can be used to help diagnose CAD accurately in the early stage. In this paper, two classical ensemble learning algorithms, namely, XGBoost algorithm and Random Forest algorithm, were used as the classification model. In order to improve the classification accuracy and performance of the model, we applied four feature processing techniques to process features respectively. In addition, synthetic minority oversampling technology (SMOTE) and adaptive synthetic (ADASYN) were used to balance the dataset, which included 71.29% CAD samples and 28.71% normal samples. The four feature processing technologies improved the performance of the classification models in terms of classification accuracy, precision, recall, F1 score and specificity. In particular, the XGBboost algorithm achieved the best prediction performance results on the dataset processed by feature construction and the SMOTE method. The best classification accuracy, recall, specificity, precision, F1 score and AUC were 94.7%, 96.1%, 93.2%, 93.4%, 94.6% and 98.0%, respectively. The experimental results prove that the proposed method can accurately and reliably identify CAD patients from suspicious patients in the early stage and can be used by medical staff for auxiliary diagnosis.

Funder

Basic Research of the Ministry of Science and Technology, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3