Small Sample Hyperspectral Image Classification Method Based on Dual-Channel Spectral Enhancement Network

Author:

Pei Songwei,Song Hong,Lu Yinning

Abstract

Deep learning has achieved significant success in the field of hyperspectral image (HSI) classification, but challenges are still faced when the number of training samples is small. Feature fusing approaches based on multi-channel and multi-scale feature extractions are attractive for HSI classification where few samples are available. In this paper, based on feature fusion, we proposed a simple yet effective CNN-based Dual-channel Spectral Enhancement Network (DSEN) to fully exploit the features of the small labeled HSI samples for HSI classification. We worked with the observation that, in many HSI classification models, most of the incorrectly classified pixels of HSI are at the border of different classes, which is caused by feature obfuscation. Hence, in DSEN, we specially designed a spectral feature extraction channel to enhance the spectral feature representation of the specific pixel. Moreover, a spatial–spectral channel was designed using small convolution kernels to extract the spatial–spectral features of HSI. By adjusting the fusion proportion of the features extracted from the two channels, the expression of spectral features was enhanced in terms of the fused features for better HSI classification. The experimental results demonstrated that the overall accuracy (OA) of HSI classification using the proposed DSEN reached 69.47%, 80.54%, and 93.24% when only five training samples for each class were selected from the Indian Pines (IP), University of Pavia (UP), and Salinas Scene (SA) datasets, respectively. The performance improved when the number of training samples increased. Compared with several related methods, DSEN demonstrated superior performance in HSI classification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference60 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3