Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms

Author:

Kareem Akeem BayoORCID,Hur Jang-Wook

Abstract

The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working conditions. This study presents a fault diagnostics framework integrated with long-term frequency for a switched-mode power supply aluminium electrolytic capacitor (SMPS-AEC). Long-term frequency condition monitoring (CM) was achieved using the advanced HIOKI LCR meter at 8 MHz. The data acquired during the experimental study can help to achieve the needed paradigm from various measured characteristics of the SMPS/power converter component to detect anomalies between the capacitors selected for analysis. The CM procedure in this study was bound by the electrical parameters—capacitance (Cs), equivalent series resistance (ESR), dissipation factor (DF), and impedance (Z)—-acting as degradation techniques during physical and chemical changes of the capacitors. Furthermore, the proposed methodology was carried out using statistical feature extraction and filter-based correlation for feature selection, followed by training, testing and validation using the selected supervised learning algorithms. The resulting assessment revealed that with increased data capacity, an improved performance was achieved across the chosen algorithms out of which the k-nearest neighbors (KNN) had the best average accuracy (98.40%) and lowest computational cost (0.31 s) across all the electrical parameters. Further assessment was carried out using the fault visualization aided by principal component analysis (PCA) to validate and decide on the best electrical parameters for the CM technique.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3