LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation

Author:

Liu Ruihua,Nan Haoyu,Zou Yangyang,Xie Ting,Ye Zhiyong

Abstract

Convolutional network models have been widely used in image segmentation. However, there are many types of boundary contour features in medical images which seriously affect the stability and accuracy of image segmentation models, such as the ambiguity of tumors, the variability of lesions, and the weak boundaries of fine blood vessels. In this paper, in order to solve these problems we first introduce the dual-tree complex wavelet scattering transform module, and then innovatively propose a learning scattering wavelet network model. In addition, a new improved active contour loss function is further constructed to deal with complex segmentation. Finally, the equilibrium coefficient of our model is discussed. Experiments on the BraTS2020 dataset show that the LSW-Net model has improved the Dice coefficient, accuracy, and sensitivity of the classic FCN, SegNet, and At-Unet models by at least 3.51%, 2.11%, and 0.46%, respectively. In addition, the LSW-Net model still has an advantage in the average measure of Dice coefficients compared with some advanced segmentation models. Experiments on the DRIVE dataset prove that our model outperforms the other 14 algorithms in both Dice coefficient and specificity measures. In particular, the sensitivity of our model provides a 3.39% improvement when compared with the Unet model, and the model’s effect is obvious.

Funder

Chongqing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved method for retinal vessel segmentation in U-Net;Multimedia Tools and Applications;2024-03-05

2. Retina image segmentation using the three-path Unet model;Scientific Reports;2023-12-19

3. LDWS-net: A learnable deep wavelet scattering network for RGB salient object detection;Image and Vision Computing;2023-09

4. Pool-UNet: Ischemic Stroke Segmentation from CT Perfusion Scans Using Poolformer UNet;2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT);2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3