Retina image segmentation using the three-path Unet model

Author:

Liu Ruihua,Pu Wei,Nan Haoyu,Zou Yangyang

Abstract

AbstractUnsupervised image segmentation is a technique that divides an image into distinct regions or objects without prior labeling. This approach offers flexibility and adaptability to various types of image data. Particularly for large datasets, it eliminates the need for manual labeling, thereby it presents advantages in terms of time and labor costs. However, when applied to retinal image segmentation, challenges arise due to variations in data, presence of noise, and manual threshold adjustments, which can lead to over-segmentation or under-segmentation of small blood vessel boundaries and endpoints. In order to enhance the precision and accuracy of retinal image segmentation, we propose a novel image supervised segmentation network based on three-path Unet model.Firstly, the Haar wavelet transform is employed to extract high-frequency image information, which forms the foundation for the proposed HaarNet, a Unet-inspired architecture. Next, the HaarNet is integrated with the Unet and SegNet frameworks to develop a three-path Unet model, referred to as TP-Unet. Finally, the model is further refined into TP-Unet+AE+DSL by incorporating the advantages of auto-encoding (AE) and deep supervised learning (DSL) techniques, thereby enhancing the overall performance of the system. To evaluate the effectiveness of our proposed model, we conduct experiments using the DRIVE and CHASE public datasets. On the DRIVE dataset, our recommended model achieves a Dice coefficient of 0.8291 and a sensitivity index of 0.8184. These results significantly outperform the Unet model by $$1.34\%$$ 1.34 % and $$2.60\%$$ 2.60 % , respectively. Furthermore, our model demonstrates excellent performance on the CHASE dataset, with a Dice coefficient of 0.8162, a sensitivity of 0.8242, and an accuracy of 0.9664. These metrics surpass the Unet model by $$3.20\%$$ 3.20 % , $$6.66\%$$ 6.66 % , and $$0.42\%$$ 0.42 % , respectively. Our proposed model provides more accurate and reliable results for retinal vessel segmentation, which holds significant potential for assisting doctors in their diagnosis.

Funder

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3