Phase-Based Low Power Management Combining CPU and GPU for Android Smartphones

Author:

Ohk Seung-RyeolORCID,Kim YongSin,Kim Young-JinORCID

Abstract

Smartphones have limited battery capacity, so efficient power management is required for high-performance applications and to increase usage time. In recent years, efficient power management of smartphones has become very important as the demand for power use of smartphones has grown due to deep learning, games, virtual reality, and augmented reality applications. Existing low-power techniques of smartphones focus only on lowering power consumption without considering actual power consumption based on utilization of the central processing unit (CPU) and graphics processing unit (GPU), which are major components of smartphones. In addition, they do not take into consideration the strict use of resources within the component and what instructions are being processed to operate them. In this paper, we propose a low-power technique that manages power by calculating the actual power consumption of smartphones at execution time and classifying the detailed resource operating states of CPUs and GPUs. The proposed technique was implemented by linking the kernel and native app on a Galaxy S7 smartphone equipped with Android. In experiments with 15 workloads, the proposed technique achieves an energy reduction of 18.11% compared to the low-power technique of the interactive governor built into the Galaxy S7 with a small FPS reduction of 3.12%.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. How Many People Have Smartphones in 2021?https://www.oberlo.com/statistics/how-many-people-have-smartphones

2. Which Smartphone Features Really Matter to Consumers?https://blog.gwi.com/chart-of-the-week/smartphone-features-consumers/

3. Is Smartphone Battery Capacity Growing or Staying the Same?https://c.mi.com/thread-2085983-1-0.html?mobile=no

4. Big Phone Batteries Don’t Guarantee Long Battery Lifehttps://www.androidauthority.com/what-is-mah-smartphone-battery-life-1113391/

5. Phase-Based Accurate Power Modeling for Mobile Application Processors

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3