Abstract
Transition metal dichalcogenide materials are studied to investigate unexplored research avenues, such as spin transport behavior in 2-dimensional materials due to their strong spin-orbital interaction (SOI) and the proximity effect in van der Waals (vdW) heterostructures. Interfacial interactions between bilayer graphene (BLG) and multilayer tungsten disulfide (ML-WS2) give rise to fascinating properties for the realization of advanced spintronic devices. In this study, a BLG/ML-WS2 vdW heterostructure spin field-effect transistor (FET) was fabricated to demonstrate the gate modulation of Rashba-type SOI and spin precession angle. The gate modulation of Rashba-type SOI and spin precession has been confirmed using the Hanle measurement. The change in spin precession angle agrees well with the local and non-local signals of the BLG/ML-WS2 spin FET. The operation of a spin FET in the absence of a magnetic field at room temperature is successfully demonstrated.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献