Comparison of Mechanical and Low-Frequency Dielectric Properties of Thermally and Thermo-Mechanically Aged Low Voltage CSPE/XLPE Nuclear Power Plant Cables

Author:

Afia Ramy S. A.ORCID,Mustafa EhtashamORCID,Tamus Zoltán ÁdámORCID

Abstract

During the service period of low-voltage nuclear cables, multiple stresses influence the aging of polymeric materials of cables. Thermal and radiation stresses are considered service aging factors in qualification tests, while the standards usually do not prescribe mechanical stress. CSPE/XLPE insulated nuclear cable samples were exposed to thermal and combined thermo-mechanical aging for more than 1200 h at 120 °C. The real and imaginary parts of permittivity were measured in the 200 μHz to 50 mHz range as dielectric properties. The Shore D hardness of the samples was measured to analyze the mechanical characteristics of the cable. To characterize the dielectric spectrum, derived quantities, namely central real and imaginary permittivities and real and imaginary permittivities’ central frequencies were calculated. The change of dielectric spectra did not show a clear trend with aging, but the imaginary permittivity’s central frequency was higher by 0.5 mHz in the case of thermo-mechanically aged samples. The Shore D hardness was also higher on the thermo-mechanically aged samples. These findings show the combined aging has a higher impact on the insulation properties. Hence, involving the mechanical stress in the aging procedure of cable qualification enables the design of more robust cables in a harsh environment.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference54 articles.

1. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050,2021

2. Assessing and Managing Cable Ageing in Nuclear Power Plants,2012

3. Safety of Nuclear Power Plants: Commissioning and Operation,2016

4. IEEE Standard for Qualifying Electric Cables and Splices for Nuclear Facilities

5. Literature Review of Environmental Qualification of Safety-Related Electric Cables: Summary of Past Work;Subudhi,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3