Investigation of the Structural Dependence of the Cyclical Thermal Aging of Low-Voltage PVC-Insulated Cables

Author:

Bal Semih1ORCID,Tamus Zoltán Ádám1ORCID

Affiliation:

1. Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

Abstract

The increasing penetration of distributed generation sources in low-voltage distribution grids, electric vehicles, and new appliances from the consumer side can generate short repetitive overloads on the low-voltage cable network. This work investigates the change in the dielectric properties of low-voltage cable insulation caused by short-term overloads, examining how the cable structure affects the dielectric characteristics of the cable specimens in the case of cyclic short-term thermal aging. PVC-insulated low-voltage cable samples were exposed to an accelerated aging test in a temperature-controlled oven after changing their structures by removing different layers. Three aging cycles, each of six hours, were applied to the samples. After each cycle, the tan δ and capacitance were measured by an Omicron DIRANA Dielectric Response Analyzer in the laboratory at room temperature 24 ± 0.5 °C. Furthermore, the polarization and depolarization currents were also studied. The results show that changing the cable structure impacts the dielectric parameters; in particular, the effect of the belting layer is significant. From the point of view of aging, the PVC belting layer protects the diffusion of the plasticizers of the inner structure. The findings of the study show that an asymmetric aging phenomenon can be observed in different polymeric components of the cables, even though the cables were aged in an air-circulated oven ensuring a homogeneous temperature distribution in the samples.

Funder

National Research, Development, and Innovation Fund of Hungary

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3