End-to-End Deep Neural Network Architectures for Speed and Steering Wheel Angle Prediction in Autonomous Driving

Author:

Navarro Pedro J.ORCID,Miller LeanneORCID,Rosique Francisca,Fernández-Isla Carlos,Gila-Navarro AlbertoORCID

Abstract

The complex decision-making systems used for autonomous vehicles or advanced driver-assistance systems (ADAS) are being replaced by end-to-end (e2e) architectures based on deep-neural-networks (DNN). DNNs can learn complex driving actions from datasets containing thousands of images and data obtained from the vehicle perception system. This work presents the classification, design and implementation of six e2e architectures capable of generating the driving actions of speed and steering wheel angle directly on the vehicle control elements. The work details the design stages and optimization process of the convolutional networks to develop six e2e architectures. In the metric analysis the architectures have been tested with different data sources from the vehicle, such as images, XYZ accelerations and XYZ angular speeds. The best results were obtained with a mixed data e2e architecture that used front images from the vehicle and angular speeds to predict the speed and steering wheel angle with a mean error of 1.06%. An exhaustive optimization process of the convolutional blocks has demonstrated that it is possible to design lightweight e2e architectures with high performance more suitable for the final implementation in autonomous driving.

Funder

Dirección General de Tráfico

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Fundación Séneca

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3