Resilience Evaluation of Multi-Path Routing against Network Attacks and Failures

Author:

An Hyok,Na Yoonjong,Lee Heejo,Perrig Adrian

Abstract

The current state of security and availability of the Internet is far from being commensurate with its importance. The number and strength of DDoS attacks conducted at the network layer have been steadily increasing. However, the single path (SP) routing used in today’s Internet lacks a mitigation scheme to rapidly recover from network attacks or link failure. In case of a link failure occurs, it can take several minutes until failover. In contrast, multi-path routing can take advantage of multiple alternative paths and rapidly switch to another working path. According to the level of available path control, we classfy the multi-path routing into two types, first-hop multi-path (FMP) and multi-hop multi-path (MMP) routing. Although FMP routing supported by networks, such as SD-WAN, shows marginal improvements over the current SP routing of the Internet, MMP routing supported by a global Internet architecture provides strong improvement under network attacks and link failure. MMP routing enables changing to alternate paths to mitigate the network problem in other hops, which cannot be controlled by FMP routing. To show this comparison with practical outcome, we evaluate network performance in terms of latency and loss rate to show that MMP routing can mitigate Internet hazards and provide high availability on global networks by 18 participating ASes in six countries. Our evaluation of global networks shows that, if network attacks or failures occur in other autonomous systems (ASes) that FMP routing cannot avoid, it is feasible to deal with such problems by switching to alternative paths by using MMP routing. When the global evaluation is under a transit-link DDoS attack, the loss rates of FMP that pass the transit-link are affected significantly by a transit-link DDoS attack, but the other alternative MMP paths show stable status under the DDoS attack with proper operation.

Funder

ONR Award

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3