Design of Integrated Autonomous Driving Control System That Incorporates Chassis Controllers for Improving Path Tracking Performance and Vehicle Stability

Author:

Ahn TaewonORCID,Lee YongkiORCID,Park KihongORCID

Abstract

This paper describes an integrated autonomous driving (AD) control system for an autonomous vehicle with four independent in-wheel motors (IWMs). The system consists of two parts: the AD controller and the chassis controller. These elements are functionally integrated to improve vehicle stability and path tracking performance. The vehicle is assumed to employ an IWM independently at each wheel. The AD controller implements longitudinal/lateral path tracking using proportional-integral(PI) control and adaptive model predictive control. The chassis controller is composed of two lateral control units: the active front steering (AFS) control and the torque vectoring (TV) control. Jointly, they find the yaw moment to maintain vehicle stability using sliding mode control; AFS is prioritized over TV to enhance safety margin and energy saving. Then, the command yaw moment is optimally distributed to each wheel by solving a constrained least-squares problem. Validation was performed using simulation in a double lane change scenario. The simulation results show that the integrated AD control system of this paper significantly improves the path tracking capability and vehicle stability in comparison with other control systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Path tracking for unmanned ground vehicle navigation;Giesbrecht;DRDC Suffield TM,2005

2. Automatic Steering Methods for Autonomous Automobile Path Tracking;Snider,2009

3. Stanley: The robot that won the DARPA Grand Challenge

4. Fuzzy Static Output Feedback Control for Path Following of Autonomous Vehicles With Transient Performance Improvements

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3