A Universal Machine-Learning-Based Automated Testing System for Consumer Electronic Products

Author:

Siddiqui AtifORCID,Zia Muhammad Yousuf IrfanORCID,Otero PabloORCID

Abstract

Consumer electronic manufacturing (CEM) companies face a constant challenge to maintain quality standards during frequent product launches. A manufacturing test verifies product functionality and identifies manufacturing defects. Failure to complete testing can even result in product recalls. In this research, a universal automated testing system has been proposed for CEM companies to streamline their test process in reduced test cost and time. A universal hardware interface is designed for connecting commercial off-the-shelf (COTS) test equipment and unit under test (UUT). A software application, based on machine learning, is developed in LabVIEW. The test site data for around 100 test sites have been collected. The application automatically selects COTS test equipment drivers and interfaces on UUT and test measurements for test sites through a universal hardware interface. Further, it collects real-time test measurement data, performs analysis, generates reports and key performance indicators (KPIs), and provides recommendations using machine learning. It also maintains a database for historical data to improve manufacturing processes. The proposed system can be deployed standalone as well as a replacement for the test department module of enterprise resource planning (ERP) systems providing direct access to test site hardware. Finally, the system is validated through an experimental setup in a CEM company.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3