A Complexity Reduction Method for VVC Intra Prediction Based on Statistical Analysis and SAE-CNN

Author:

Zhao Jinchao,Dai Pu,Zhang Qiuwen

Abstract

Compared with High Efficiency Video Coding (HEVC), the latest video coding standard Versatile Video Coding Standard (VVC), due to the introduction of many novel technologies and the introduction of the Quad-tree with nested Multi-type Tree (QTMT) division scheme in the block division method, the coding quality has been greatly improved. Due to the introduction of the QTMT scheme, the encoder needs to perform rate–distortion optimization for each division mode during Coding Unit (CU) division, so as to select the best division mode, which also leads to an increase in coding time and coding complexity. Therefore, we propose a VVC intra prediction complexity reduction algorithm based on statistical theory and the Size-adaptive Convolutional Neural Network (SAE-CNN). The algorithm combines the establishment of a pre-decision dictionary based on statistical theory and a Convolutional Neural Network (CNN) model based on adaptively adjusting the size of the pooling layer to form an adaptive CU size division decision process. The algorithm can make a decision on whether to divide CUs of different sizes, thereby avoiding unnecessary Rate–distortion Optimization (RDO) and reducing coding time. Experimental results show that compared with the original algorithm, our suggested algorithm can save 35.60% of the coding time and only increases the Bjøntegaard Delta Bit Rate (BD-BR) by 0.91%.

Funder

National Natural Science Foundation of China

Education Department of Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Signal and Image Multiresolution Analysis;Ouahabi,2013

2. Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency Video Coding (HEVC)

3. Medical Video Coding Based on 2nd-Generation Wavelets: Performance Evaluation

4. Versatile Video Coding (Draft 1). JVET-J1001 http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=3489

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3