QoS-Ledger: Smart Contracts and Metaheuristic for Secure Quality-of-Service and Cost-Efficient Scheduling of Medical-Data Processing

Author:

Khan Abdullah AyubORCID,Shaikh Zaffar AhmedORCID,Baitenova Laura,Mutaliyeva Lyailya,Moiseev NikitaORCID,Mikhaylov AlexeyORCID,Laghari Asif AliORCID,Idris Sahar Ahmed,Alshazly HammamORCID

Abstract

Quality-of-service (QoS) is the term used to evaluate the overall performance of a service. In healthcare applications, efficient computation of QoS is one of the mandatory requirements during the processing of medical records through smart measurement methods. Medical services often involve the transmission of demanding information. Thus, there are stringent requirements for secure, intelligent, public-network quality-of-service. This paper contributes to three different aspects. First, we propose a novel metaheuristic approach for medical cost-efficient task schedules, where an intelligent scheduler manages the tasks, such as the rate of service schedule, and lists items utilized by users during the data processing and computation through the fog node. Second, the QoS efficient-computation algorithm, which effectively monitors performance according to the indicator (parameter) with the analysis mechanism of quality-of-experience (QoE), has been developed. Third, a framework of blockchain-distributed technology-enabled QoS (QoS-ledger) computation in healthcare applications is proposed in a permissionless public peer-to-peer (P2P) network, which stores medical processed information in a distributed ledger. We have designed and deployed smart contracts for secure medical-data transmission and processing in serverless peering networks and handled overall node-protected interactions and preserved logs in a blockchain distributed ledger. The simulation result shows that QoS is computed on the blockchain public network with transmission power = average of −10 to −17 dBm, jitter = 34 ms, delay = average of 87 to 95 ms, throughput = 185 bytes, duty cycle = 8%, route of delivery and response back variable. Thus, the proposed QoS-ledger is a potential candidate for the computation of quality-of-service that is not limited to e-healthcare distributed applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3