Sentiment-Target Word Pair Extraction Model Using Statistical Analysis of Sentence Structures

Author:

Jo JaechoonORCID,Kim GyeongminORCID,Park Kinam

Abstract

Product information has been propagated online via forums and social media. Lots of merchandise are recommended via an expert system method and is considered for purchase by online comments or product reviews. For predicting people’s opinions on products, studying people’s thoughts via extracting information in documents is referred to as sentiment analysis. Finding sentiment-target word pairs is an important sentiment mining research issue. With the Korean language, as the predicate appears at the very end, it is not easy to find the exact word pairs without first identifying the syntactic structure of the sentence. In this study, we propose a model that parses sentence structures and extracts sentiment-target word pairs from the parse tree. The proposed model extracts the sentiment-target word pairs that appear in the sentence by using parsing and statistical methods. For extracting sentiment-target word pairs, this model uses a sentiment word extractor and a target word extractor. After testing data from 4000 movie reviews, the applicable model showed high performance in both accuracy 93.25 (+14.45) and F1-score 82.29 (+3.31) compared with others. However, improvements in the recall rate (−0.35) are needed and computational costs must be reduced.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Online Consumer-Generated Reviews Have Significant Impact on Offline Purchase Behavior;Lipsman,2007

2. Internet Users Like the Convenience but Worry About the Security of Their Financial Information;Horrigan,2008

3. Sentiment Analysis: A Comparative Study on Different Approaches

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3