A Novel Cascade Model for End-to-End Aspect-Based Social Comment Sentiment Analysis

Author:

Ding Hengbing,Huang Shan,Jin WeiqiangORCID,Shan Yuan,Yu HangORCID

Abstract

The end-to-end aspect-based social comment sentiment analysis (E2E-ABSA) task aims to discover human’s fine-grained sentimental polarity, which can be refined to determine the attitude in response to an object revealed in a social user’s textual description. The E2E-ABSA problem includes two sub-tasks, i.e., opinion target extraction and target sentiment identification. However, most previous methods always tend to model these two tasks independently, which inevitably hinders the overall practical performance. This paper investigates the critical collaborative signals between these two sub-tasks and thus proposes a novel cascade social comment sentiment analysis model for jointly tackling the E2E-ABSA problem, namely CasNSA. Instead of treating the opinion target extraction and target sentiment identification as discrete procedures in previous works, our new framework takes the contextualized target semantic encoding into consideration to yield better sentimental polarity judgment. Additionally, extensive empirical results show that the proposed approach effectively achieves a 68.13% F1-score on SemEval-2014, 62.34% F1-Score on SemEval-2015, 56.40% F1-Score on SemEval-2016, and 50.05% F1-score on a Twitter dataset, which is higher than the existing approaches. Ablated experiments demonstrate that the CasNSA model substantially outperforms state-of-the-art methods, even when using fixed words embedding rather than pre-trained BERT fine tuning. Moreover, in-depth performance analysis on the social comment datasets further validates that our work gains superior performance and reliability effectively and efficiently in realistic scenarios.

Funder

Shanghai Yangfan Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3