Deep and Transfer Learning Approaches for Pedestrian Identification and Classification in Autonomous Vehicles

Author:

Mounsey Alex,Khan AsiyaORCID,Sharma Sanjay

Abstract

Pedestrian detection is at the core of autonomous road vehicle navigation systems as they allow a vehicle to understand where potential hazards lie in the surrounding area and enable it to act in such a way that avoids traffic-accidents, which may result in individuals being harmed. In this work, a review of the convolutional neural networks (CNN) to tackle pedestrian detection is presented. We further present models based on CNN and transfer learning. The CNN model with the VGG-16 architecture is further optimised using the transfer learning approach. This paper demonstrates that the use of image augmentation on training data can yield varying results. In addition, a pre-processing system that can be used to prepare 3D spatial data obtained via LiDAR sensors is proposed. This pre-processing system is able to identify candidate regions that can be put forward for classification, whether that be 3D classification or a combination of 2D and 3D classifications via sensor fusion. We proposed a number of models based on transfer learning and convolutional neural networks and achieved over 98% accuracy with the adaptive transfer learning model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference43 articles.

1. Mordor Intelligencehttps://www.mordorintelligence.com/industry-reports/autonomous-driverless-cars-market-potential-estimation

2. AAA: American Trust in Autonomous Vehicles Slipshttps://newsroom.aaa.com/2018/05/aaa-american-trust-autonomous-vehicles-slips/

3. Big vehicular traffic Data mining: Towards accident and congestion prevention

4. Pedestrian detection based on deep learning model

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3