Promoting Adversarial Transferability via Dual-Sampling Variance Aggregation and Feature Heterogeneity Attacks

Author:

Huang Yang1,Chen Yuling1,Wang Xuewei2,Yang Jing1ORCID,Wang Qi1ORCID

Affiliation:

1. State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

2. Computer College, Weifang University of Science and Technology, Weifang 261000, China

Abstract

At present, deep neural networks have been widely used in various fields, but their vulnerability requires attention. The adversarial attack aims to mislead the model by generating imperceptible perturbations on the source model, and although white-box attacks have achieved good success rates, existing adversarial samples exhibit weak migration in the black-box case, especially on some adversarially trained defense models. Previous work for gradient-based optimization either optimizes the image before iteration or optimizes the gradient during iteration, so it results in the generated adversarial samples overfitting the source model and exhibiting poor mobility to the adversarially trained model. To solve these problems, we propose the dual-sample variance aggregation with feature heterogeneity attack; our method is optimized before and during iterations to produce adversarial samples with better transferability. In addition, our method can be integrated with various input transformations. A large amount of experimental data demonstrate the effectiveness of the proposed method, which improves the attack success rate by 5.9% for the normally trained model and 11.5% for the adversarially trained model compared with the current state-of-the-art migration-enhancing attack methods.

Funder

National Natural Science Foundation

Top Technology Talent Project from Guizhou Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RPU-PVB: robust object detection based on a unified metric perspective with bilinear interpolation;Journal of Cloud Computing;2023-12-02

2. Communication-Efficient Federated Learning with Sparsity and Quantization;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

3. Robust Object Detection Based on a Comparative Learning Perspective;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

4. Adversarial Attack Method Based on Dual- frequency Domain Transformation;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

5. Boosting Adversarial Attacks with Nadam Optimizer;Electronics;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3