Framework for Detecting Breast Cancer Risk Presence Using Deep Learning

Author:

Humayun MamoonaORCID,Khalil Muhammad Ibrahim,Almuayqil Saleh NaifORCID,Jhanjhi N. Z.ORCID

Abstract

Cancer is a complicated global health concern with a significant fatality rate. Breast cancer is among the leading causes of mortality each year. Advancements in prognoses have been progressively based primarily on the expression of genes, offering insight into robust and appropriate healthcare decisions, owing to the fast growth of advanced throughput sequencing techniques and the use of various deep learning approaches that have arisen in the past few years. Diagnostic-imaging disease indicators such as breast density and tissue texture are widely used by physicians and automated technology. The effective and specific identification of cancer risk presence can be used to inform tailored screening and preventive decisions. For several classifications and prediction applications, such as breast imaging, deep learning has increasingly emerged as an effective method. We present a deep learning model approach for predicting breast cancer risk primarily on this foundation. The proposed methodology is based on transfer learning using the InceptionResNetV2 deep learning model. Our experimental work on a breast cancer dataset demonstrates high model performance, with 91% accuracy. The proposed model includes risk markers that are used to improve breast cancer risk assessment scores and presents promising results compared to existing approaches. Deep learning models include risk markers that are used to improve accuracy scores. This article depicts breast cancer risk indicators, defines the proper usage, features, and limits of each risk forecasting model, and examines the increasing role of deep learning (DL) in risk detection. The proposed model could potentially be used to automate various types of medical imaging techniques.

Funder

the Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3