Optimized gene selection and classification of cancer from microarray gene expression data using deep learning
Author:
Funder
King Abdulaziz University
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-020-05367-8.pdf
Reference48 articles.
1. NIH (2019) National Cancer Institute (NCI), cancer statistics. Available from: https://www.cancer.gov/. Accessed 23 April 2019
2. World Health Organization, Cancer (2018) Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 23 April 2019
3. Babu M, Sarkar K (2016) A comparative study of gene selection methods for cancer classification using microarray data. In: 2016 second international conference on research in computational intelligence and communication networks (ICRCICN). IEEE
4. Arslan MT, Kalinli A (2016) A comparative study of statistical and artificial intelligence based classification algorithms on central nervous system cancer microarray gene expression data. Int J Intell Syst Appl Eng. https://doi.org/10.18201/ijisae.267094
5. Bolón-Canedo V, Sánchez-Marono N, Alonso-Betanzos A, Benítez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282:111–135
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel parallel feature rank aggregation algorithm for gene selection applied to microarray data classification;Computational Biology and Chemistry;2024-10
2. Wavelet feature extraction and bio-inspired feature selection for the prognosis of lung cancer − A statistical framework analysis;Measurement;2024-10
3. Automated Feature Selection in Microarray Data Analysis Using Deep Learning;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10
4. Diabetic retinopathy detection and severity classification using optimized deep learning with explainable AI technique;Multimedia Tools and Applications;2024-04-03
5. Design of Bayesian stochastic networks for numerical treatment of Williamson fluid stretching flow model with mixed convected heat generation;Numerical Heat Transfer, Part B: Fundamentals;2024-03-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3