Robust and Refined Salient Object Detection Based on Diffusion Model

Author:

Ye Hanchen1ORCID,Zhang Yuyue1ORCID,Zhao Xiaoli1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

Salient object detection (SOD) networks are vulnerable to adversarial attacks. As adversarial training is computationally expensive for SOD, existing defense methods instead adopt a noise-against-noise strategy that disrupts adversarial perturbation and restores the image either in input or feature space. However, their limited learning capacity and the need for network modifications limit their applicability. In recent years, the popular diffusion model coincides with the existing defense idea and exhibits excellent purification performance, but there still remains an accuracy gap between the saliency results generated from the purified images and the benign images. In this paper, we propose a Robust and Refined (RoRe) SOD defense framework based on the diffusion model to simultaneously achieve adversarial robustness as well as improved accuracy for benign and purified images. Our proposed RoRe defense consists of three modules: purification, adversarial detection, and refinement. The purification module leverages the powerful generation capability of the diffusion model to purify perturbed input images to achieve robustness. The adversarial detection module utilizes the guidance classifier in the diffusion model for multi-step voting classification. By combining this classifier with a similarity condition, precise adversarial detection can be achieved, providing the possibility of regaining the original accuracy for benign images. The refinement module uses a simple and effective UNet to enhance the accuracy of purified images. The experiments demonstrate that RoRe achieves superior robustness over state-of-the-art methods while maintaining high accuracy for benign images. Moreover, RoRe shows good results against backward pass differentiable approximation (BPDA) attacks.

Funder

Scientific and Technological Innovation 2030—Major Project of “New Generation Artificial Intelligence”

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3