Pyramidal Feature Shrinking for Salient Object Detection

Author:

Ma Mingcan,Xia Changqun,Li Jia

Abstract

Recently, we have witnessed the great progress of salient object detection (SOD), which benefits from the effectiveness of various feature aggregation strategies. However, existing methods usually aggregate the low-level features containing details and the high-level features containing semantics over a large span, which introduces noise into the aggregated features and generate inaccurate saliency map. To address this issue, we propose pyramidal feature shrinking network (PFSNet), which aims to aggregate adjacent feature nodes in pairs with layer-by-layer shrinkage, so that the aggregated features fuse effective details and semantics together and discard interference information. Specifically, pyramidal shrinking decoder (PSD) is proposed to aggregate adjacent features hierarchically in an asymptotic manner. Unlike other methods that aggregate features with significantly different information, this method only focuses on adjacent feature nodes in each layer and shrinks them to a final unique feature node. Besides, we propose adjacent fusion module (AFM) to perform mutual spatial enhancement between the adjacent features so as to dynamically weight the features and adaptively fuse the appropriate information. In addition, scale-aware enrichment module (SEM) based on the features extracted from backbone is utilized to obtain rich scale information and generate diverse initial features with dilated convolutions. Extensive quantitative and qualitative experiments demonstrate that the proposed intuitive framework outperforms 14 state-of-the-art approaches on 5 public datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3