Author:
Sun Xinyan,Li Zhenye,Zhu Tingting,Ni Chao
Abstract
Grading the quality of fresh cut flowers is an important practice in the flower industry. Based on the flower maturing status, a classification method based on deep learning and depth information was proposed for the grading of flower quality. Firstly, the RGB image and the depth image of a flower bud were collected and transformed into fused RGBD information. Then, the RGBD information of a flower was set as inputs of a convolutional neural network to determine the flower bud maturing status. Four convolutional neural network models (VGG16, ResNet18, MobileNetV2, and InceptionV3) were adjusted for a four-dimensional (4D) RGBD input to classify flowers, and their classification performances were compared with and without depth information. The experimental results show that the classification accuracy was improved with depth information, and the improved InceptionV3 network with RGBD achieved the highest classification accuracy (up to 98%), which means that the depth information can effectively reflect the characteristics of the flower bud and is helpful for the classification of the maturing status. These results have a certain significance for the intelligent classification and sorting of fresh flowers.
Funder
Natural Science Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献