A Velocity Estimation Technique for a Monocular Camera Using mmWave FMCW Radars

Author:

Pandya AaravORCID,Jha AjitORCID,Cenkeramaddi Linga ReddyORCID

Abstract

Perception in terms of object detection, classification, and dynamic estimation (position and velocity) are fundamental functionalities that autonomous agents (unmanned ground vehicles, unmanned aerial vehicles, or robots) have to navigate safely and autonomously. To date, various sensors have been used individually or in combination to achieve this goal. In this paper, we present a novel method for leveraging millimeter wave radar’s (mmW radar’s) ability to accurately measure position and velocity in order to improve and optimize velocity estimation using a monocular camera (using optical flow) and machine learning techniques. The proposed method eliminates ambiguity in optical flow velocity estimation when the object of interest is at the edge of the frame or far away from the camera without requiring camera–radar calibration. Moreover, algorithms of various complexity were implemented using custom dataset, and each of them successfully detected the object and estimated its velocity accurately and independently of the object’s distance and location in frame. Here, we present a complete implementation of camera–mmW radar late feature fusion to improve the camera’s velocity estimation performance. It includes setup design, data acquisition, dataset development, and finally, implementing a lightweight ML model that successfully maps the mmW radar features to the camera, allowing it to perceive and estimate the dynamics of a target object without any calibration.

Funder

Norges Forskningsråd

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3