A Novel Hybrid Artificial Bee Colony-Based Deep Convolutional Neural Network to Improve the Detection Performance of Backscatter Communication Systems

Author:

Aghakhani Sina1ORCID,Larijani Ata2,Sadeghi Fatemeh3,Martín Diego3ORCID,Shahrakht Ali Ahmadi3

Affiliation:

1. Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA

2. Department of Management Information Systems, Oklahoma State University, Stillwater, OK 74074, USA

3. ETSI de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain

Abstract

Backscatter communication (BC) is a promising technology for low-power and low-data-rate applications, though the signal detection performance is limited since the backscattered signal is usually much weaker than the original signal. When the detection performance is poor, the backscatter device (BD) may not be able to accurately detect and interpret the incoming signal, leading to errors and degraded communication quality. This can result in data loss, slow data transfer rates, and reduced reliability of the communication link. This paper proposes a novel approach to improve the detection performance of backscatter communication systems using evolutionary deep learning. In particular, we focus on training deep convolutional neural networks (DCNNs) to improve the detection performance of BC. We first develop a novel hybrid algorithm based on artificial bee colony (ABC), biogeography-based optimization (BBO), and particle swarm optimization (PSO) to optimize the architecture of the DCNN, followed by training using a large set of benchmark datasets. To develop the hybrid ABC, the migration operator of the BBO is used to improve the exploitation. Moving towards the global best of PSO is also proposed to improve the exploration of the ABC. Then, we take advantage of the proposed deep architecture to improve the bit-error rate (BER) performance of the studied BC system. The simulation results demonstrate that the proposed algorithm has the best performance in training the benchmark datasets. The results also show that the proposed approach significantly improves the detection performance of backscattered signals compared to existing works.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3