Long Short-Term Memory Network-Based HVDC Systems Fault Diagnosis under Knowledge Graph

Author:

Chen Qian1,Wu Jiyang1,Li Qiang1,Gao Ximing2,Yu Rongxing3,Guo Jianbao4,Peng Guangqiang4,Yang Bo3

Affiliation:

1. EHV Power Transmission Company of China Southern Power Grid Co., Ltd., Guangzhou 510530, China

2. China Southern Power Grid Co., Ltd., Guangzhou 510530, China

3. EHV Power Transmission Company of China Southern Power Grid Co., Ltd., Dali Bureau, Dali 671000, China

4. Maintenance and Test Center of CSG EHV Power Transmission Company of China Southern Power Grid Co., Ltd., Guangzhou 510530, China

Abstract

To enhance the precision of fault diagnosis for high-voltage direct-current (HVDC) systems by effectively extracting various types of fault characteristics, a fault diagnosis method based on the long short-term memory network (LSTM) is proposed in this paper. The method relies on a knowledge graph platform and is developed using measured data from four fault types in an HVDC substation located in southwest China. Firstly, a knowledge graph for the HVDC systems is constructed, then the fault waveform data is preprocessed and divided into a training set and a test set. Various optimizers are employed to train and test the LSTM. The proposed strategy’s accuracy is calculated and compared with recurrent neural network (RNN), eXtreme Gradient Boosting (XGBoost), support vector machine (SVM), Naive Bayes classifier, probabilistic neural networks (PNN), and classification learner (CL), which are commonly used in fault diagnosis. Results indicate that the proposed method achieves an accuracy of over 95%, which is 30% higher than RNN, 8% higher than XGBoost, 4% higher than SVM, 7% higher than Naive Bayes, 40% higher than PNN, and 42% higher than classification learner (CL), respectively; the method also has the minimum time cost, fully demonstrating its superiority and effectiveness compared to other methods.

Funder

key science and technology projects of the China Southern Power Grid

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3