Automatic Classification of Normal–Abnormal Heart Sounds Using Convolution Neural Network and Long-Short Term Memory

Author:

Chen Ding,Xuan WeipengORCID,Gu Yexing,Liu Fuhai,Chen JinkaiORCID,Xia Shudong,Jin HaoORCID,Dong ShurongORCID,Luo JikuiORCID

Abstract

The phonocardiogram (PCG) is an important analysis method for the diagnosis of cardiovascular disease, which is usually performed by experienced medical experts. Due to the high ratio of patients to doctors, there is a pressing need for a real-time automated phonocardiogram classification system for the diagnosis of cardiovascular disease. This paper proposes a deep neural-network structure based on a one-dimensional convolutional neural network (1D-CNN) and a long short-term memory network (LSTM), which can directly classify unsegmented PCG to identify abnormal signal. The PCG data were filtered and put into the model for analysis. A total of 3099 pieces of heart-sound recordings were used, while another 100 patients’ heart-sound data collected by our group and diagnosed by doctors were used to test and verify the model. Results show that the CNN-LSTM model provided a good overall balanced accuracy of 0.86 ± 0.01 with a sensitivity of 0.87 ± 0.02, and specificity of 0.89 ± 0.02. The F1-score was 0.91 ± 0.01, and the receiver-operating characteristic (ROC) plot produced an area under the curve (AUC) value of 0.92 ± 0.01. The sensitivity, specificity and accuracy of the 100 patients’ data were 0.83 ± 0.02, 0.80 ± 0.02 and 0.85 ± 0.03, respectively. The proposed model does not require feature engineering and heart-sound segmentation, which possesses reliable performance in classification of abnormal PCG; and is fast and suitable for real-time diagnosis application.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

NSFC-Zhejiang Joint Fund for the Integration of Industrialization and information

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Cardiovascular Diseases (CVDs)https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

2. On the mechanism of production of the heart sounds

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3