Abstract
The phonocardiogram (PCG) is an important analysis method for the diagnosis of cardiovascular disease, which is usually performed by experienced medical experts. Due to the high ratio of patients to doctors, there is a pressing need for a real-time automated phonocardiogram classification system for the diagnosis of cardiovascular disease. This paper proposes a deep neural-network structure based on a one-dimensional convolutional neural network (1D-CNN) and a long short-term memory network (LSTM), which can directly classify unsegmented PCG to identify abnormal signal. The PCG data were filtered and put into the model for analysis. A total of 3099 pieces of heart-sound recordings were used, while another 100 patients’ heart-sound data collected by our group and diagnosed by doctors were used to test and verify the model. Results show that the CNN-LSTM model provided a good overall balanced accuracy of 0.86 ± 0.01 with a sensitivity of 0.87 ± 0.02, and specificity of 0.89 ± 0.02. The F1-score was 0.91 ± 0.01, and the receiver-operating characteristic (ROC) plot produced an area under the curve (AUC) value of 0.92 ± 0.01. The sensitivity, specificity and accuracy of the 100 patients’ data were 0.83 ± 0.02, 0.80 ± 0.02 and 0.85 ± 0.03, respectively. The proposed model does not require feature engineering and heart-sound segmentation, which possesses reliable performance in classification of abnormal PCG; and is fast and suitable for real-time diagnosis application.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
NSFC-Zhejiang Joint Fund for the Integration of Industrialization and information
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference26 articles.
1. Cardiovascular Diseases (CVDs)https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
2. On the mechanism of production of the heart sounds
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献