Objective Video Quality Assessment Method for Face Recognition Tasks

Author:

Leszczuk MikołajORCID,Janowski LucjanORCID,Nawała JakubORCID,Boev Atanas

Abstract

Nowadays, there are many metrics for overall Quality of Experience (QoE), both those with Full Reference (FR), such as Peak Signal-to-Noise Ratio (PSNR) or Structural Similarity (SSIM), and those with No Reference (NR), such as Video Quality Indicators (VQI), which are successfully used in video processing systems to evaluate videos whose quality is degraded by different processing scenarios. However, they are not suitable for video sequences used for recognition tasks (Target Recognition Videos, TRV). Therefore, correctly estimating the performance of the video processing pipeline in both manual and Computer Vision (CV) recognition tasks is still a major research challenge. There is a need for objective methods to evaluate video quality for recognition tasks. In response to this need, we show in this paper that it is possible to develop the new concept of an objective model for evaluating video quality for face recognition tasks. The model is trained, tested and validated on a representative set of image sequences. The set of degradation scenarios is based on the model of a digital camera and how the luminous flux reflected from the scene eventually becomes a digital image. The resulting degraded images are evaluated using a CV library for face recognition as well as VQI. The measured accuracy of a model, expressed as the value of the F-measure parameter, is 0.87.

Funder

Huawei Technologies

National Centre for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

1. Revising and Improving the ITU-T Recommendation P. 912;Leszczuk;J. Telecommun. Inf. Technol.,2015

2. A proposed methodology for subjective evaluation of video and text summarization;Garcia-Zapirain,2018

3. An integrated AMIS prototype for automated summarization and translation of newscasts and reports;Grega,2018

4. Selected Aspects of the New Recommendation on Subjective Methods of Assessing Video Quality in Recognition Tasks;Leszczuk,2021

5. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments;Huang,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3