A Distorted-Image Quality Assessment Algorithm Based on a Sparse Structure and Subjective Perception

Author:

Yang Yang1,Liu Chang1,Wu Hui1,Yu Dingguo1

Affiliation:

1. College of Media Engineering, Communication University of Zhejiang, Xueyuan Street, Hangzhou 310018, China

Abstract

Most image quality assessment (IQA) algorithms based on sparse representation primarily focus on amplitude information, often overlooking the structural composition of images. However, structural composition is closely linked to perceived image quality, a connection that existing methods do not adequately address. To fill this gap, this paper proposes a novel distorted-image quality assessment algorithm based on a sparse structure and subjective perception (IQA-SSSP). This algorithm evaluates the quality of distorted images by measuring the sparse structure similarity between a reference and distorted images. The proposed method has several advantages. First, the sparse structure algorithm operates with reduced computational complexity, leading to faster processing speeds, which makes it suitable for practical applications. Additionally, it efficiently handles large-scale data, further enhancing the assessment process. Experimental results validate the effectiveness of the algorithm, showing that it achieves a high correlation with human visual perception, as reflected in both objective and subjective evaluations. Specifically, the algorithm yielded a Pearson correlation coefficient of 0.929 and a mean squared error of 8.003, demonstrating its robustness and efficiency. By addressing the limitations of existing IQA methods and introducing a more holistic approach, this paper offers new perspectives on IQA. The proposed algorithm not only provides reliable quality assessment results but also closely aligns with human visual experience, thereby enhancing both the objectivity and accuracy of image quality evaluations. This research offers significant theoretical support for the advancement of sparse representation in IQA.

Funder

the national social science fund of China

the national natural science foundation of China

the key research and development program of Zhejiang Province, China

the medium and long-term science and technology plan for radio, television, and online audiovisuals

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3