Study on Body Size Measurement Method of Goat and Cattle under Different Background Based on Deep Learning

Author:

Li Keqiang,Teng Guifa

Abstract

The feasibility of using depth sensors to measure the body size of livestock has been extensively tested. Most existing methods are only capable of measuring the body size of specific livestock in a specific background. In this study, we proposed a unique method of livestock body size measurement using deep learning. By training the data of cattle and goat with same feature points, different animal sizes can be measured under different backgrounds. First, a novel penalty function and an autoregressive model were introduced to reconstruct the depth image with super-resolution, and the effect of distance and illumination on the depth image was reduced. Second, under the U-Net neural network, the characteristics exhibited by the attention module and the DropBlock were adopted to improve the robustness of the background and trunk segmentation. Lastly, this study initially exploited the idea of human joint point location to accurately locate the livestock body feature points, and the livestock was accurately measured. According to the results, the average accuracy of this method was 93.59%. The correct key points for detecting the points of withers, shoulder points, shallowest part of the chest, highest point of the hip bones and ischia tuberosity had the percentages of 96.7%, 89.3%, 95.6%, 90.5% and 94.5%, respectively. In addition, the mean relative errors of withers height, hip height, body length and chest depth were only 1.86%, 2.07%, 2.42% and 2.72%, respectively.

Funder

Hebei Graduate Student Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3