RSSGM: Recurrent Self-Similar Gauss–Markov Mobility Model

Author:

Alenazi Mohammed J. F.ORCID,Abbas Shatha O.,Almowuena Saleh,Alsabaan Maazen

Abstract

Understanding node mobility is critical for the proper simulation of mobile devices in a wireless network. However, current mobility models often do not reflect the realistic movements of users within their environments. They also do not provide the freedom to adjust their degrees of randomness or adequately mimic human movements by injecting possible crossing points and adding recurrent patterns. In this paper, we propose the recurrent self-similar Gauss–Markov mobility (RSSGM) model, a novel mobility model that is suitable for applications in which nodes exhibit recurrent visits to selected locations with semi-similar routes. Examples of such applications include daily human routines, airplane and public transportation routes, and intra-campus student walks. First, we present the proposed algorithm and its assumptions, and then we study its behavior in different scenarios. The study’s results show that different and more realistic mobility traces can be achieved without the need for complex computational models or existing GPS records. Our model can flexibly adjust its behavior to fit any application by carefully tuning and choosing the right values for its parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward efficient vehicular-based virtual network infrastructure for smart cities;Engineering Science and Technology, an International Journal;2023-08

2. Anchored self‐similar 3D Gauss‐Markov mobility model for ad hoc routing scenarios;IET Networks;2023-07-05

3. SSHS: SDN seamless handover system among LAN access points;Concurrency and Computation: Practice and Experience;2023-05-30

4. Drone Collaboration Using OLSR Protocol in a FANET Network for Traffic Monitoring in a Smart City Environment;CSEI: International Conference on Computer Science, Electronics and Industrial Engineering (CSEI);2023

5. Mobility Prediction of Mobile Wireless Nodes;Applied Sciences;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3