Intelligent Fog-Enabled Smart Healthcare System for Wearable Physiological Parameter Detection

Author:

Ijaz Muhammad,Li Gang,Wang Huiquan,El-Sherbeeny Ahmed M.ORCID,Moro Awelisah YussifORCID,Lin Ling,Koubaa AnisORCID,Noor AlamORCID

Abstract

Wearable technology plays a key role in smart healthcare applications. Detection and analysis of the physiological data from wearable devices is an essential process in smart healthcare. Physiological data analysis is performed in fog computing to abridge the excess latency introduced by cloud computing. However, the latency for the emergency health status and overloading in fog environment becomes key challenges for smart healthcare. This paper resolves these problems by presenting a novel tri-fog health architecture for physiological parameter detection. The overall system is built upon three layers as wearable layer, intelligent fog layer, and cloud layer. In the first layer, data from the wearable of patients are subjected to fault detection at personal data assistant (PDA). To eliminate fault data, we present the rapid kernel principal component analysis (RK-PCA) algorithm. Then, the faultless data is validated, whether it is duplicate or not, by the data on-looker node in the second layer. To remove data redundancy, we propose a new fuzzy assisted objective optimization by ratio analysis (FaMOORA) algorithm. To timely predict the user’s health status, we enable the two-level health hidden Markov model (2L-2HMM) that finds the user’s health status from temporal variations in data collected from wearable devices. Finally, the user’s health status is detected in the fog layer with the assist of a hybrid machine learning algorithm, namely SpikQ-Net, based on the three major categories of attributes such as behavioral, biomedical, and environment. Upon the user’s health status, the immediate action is taken by both cloud and fog layers. To ensure lower response time and timely service, we also present an optimal health off procedure with the aid of the multi-objective spotted hyena optimization (MoSHO) algorithm. The health off method allows offloading between overloaded and underloaded fog nodes. The proposed tri-fog health model is validated by a thorough simulation performed in the iFogSim tool. It shows better achievements in latency (reduced up to 3 ms), execution time (reduced up to 1.7 ms), detection accuracy (improved up to 97%), and system stability (improved up to 96%).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3