Optimizing health data analytics in fog computing using hyperparameter tuning and grid search

Author:

Singh Kiran Deep,Singh Prabh Deep,Verma Rohan,Taneja Harsh

Abstract

The integration of fog computing with health data analytics signifies a paradigm shift in the field of healthcare, offering the potential for streamlined and prompt analysis of patient welfare. The increasing volume of health data necessitates the development of efficient analytical models in fog computing settings. The objective of this research is to examine the integration of fog computing and health data analytics, specifically emphasizing the utilization of hyperparameter tuning and grid search techniques to enhance optimization approaches. Hyperparameter tuning and grid search are two techniques utilized in machine learning to optimize the performance of models. These methods are employed in the context of health data analytics inside fog computing with the objective of improving accuracy, reducing latency, and enhancing resource efficiency. Our research endeavors to provide significant contributions to the advancement of adaptable and responsive healthcare systems, therefore promoting enhanced patient outcomes in the era of data-driven decision-making.

Publisher

Taru Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3