A Generative Model for Traffic Demand with Heterogeneous and Spatiotemporal Characteristics in Massive Wi-Fi Systems

Author:

Lee Jae-MinORCID,Kim Jong-DeokORCID

Abstract

A substantial amount of money and time is required to optimize resources in a massive Wi-Fi network in a real-world environment. Therefore, to reduce cost, proposed algorithms are first verified through simulations before implementing them in a real-world environment. A traffic model is essential to describe user traffic for simulations. Existing traffic models are statistical models based on a discrete-time random process and combine a spatiotemporal characteristic model with the varying parameters, such as average and variance, of a statistical model. The spatiotemporal characteristic model has a mathematically strict assumption that the access points (APs) have approximately similar traffic patterns that increase during day times and decrease at night. The mathematical assumption ensures a homogeneous representation of the network traffic. It does not include heterogeneous characteristics, such as the fact that lecture buildings on campus have a high traffic during lectures, while restaurants have a high traffic only during mealtimes. Therefore, it is difficult to represent heterogeneous traffic using this mathematical model. Deep learning can be used to represent heterogeneous patterns. This study proposes a generative model for Wi-Fi traffic that considers spatiotemporal characteristics using deep learning. The proposed model learns the heterogeneous traffic patterns from the AP-level measurement data without any assumptions and generates similar traffic patterns based on the data. The result shows that the difference between the sample generated by the proposed model and the collected data is up to 72.1% less than that reported in previous studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference43 articles.

1. Network modelling and simulation tools

2. Survey of network traffic models;Chandrasekaran;Waschington Univ. St. Louis CSE,2009

3. Spatio-temporal modeling of traffic workload in a campus WLAN;Hernández-Campos;Proceedings of the 2nd Annual International Workshop on Wireless Internet,2006

4. Modeling and characterization of large-scale Wi-Fi traffic in public hot-spots;Ghosh;Proceedings of the 2011 Proceedings IEEE INFOCOM,2011

5. Greedy hierarchical variational autoencoders for large-scale video prediction;Wu;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection Method for Integrated Encrypted Malicious Traffic Based on RFCNN-GRU;Communications in Computer and Information Science;2024

2. Overlapping Channel Bonding Allocation for Dense WLANs under Imbalanced Traffic Demands;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3