Machine Learning Techniques for the Prediction of the Magnetic and Electric Field of Electrostatic Discharges

Author:

Fotis Georgios,Vita Vasiliki,Ekonomou Lambros

Abstract

The magnetic and electric fields of electrostatic discharges are assessed using the Naïve Bayes algorithm, a machine learning technique. Laboratory data from electrostatic discharge generators were used for the implementation of this algorithm. The applied machine learning algorithm can be used to predict the radiated field knowing the discharge current. The results of the Naïve Bayes algorithm are compared to a previous software tool derived by Artificial Neural Networks, proving its better outcome. The Naïve Bayes algorithm has excellent performance on most classification tasks, despite its simplicity, and usually is more accurate than many sophisticated methods. The proposed algorithm can be used by laboratories that conduct electrostatic discharge tests on electronic equipment. It will be a useful software tool, since they will be able to predict the radiating electromagnetic field by simply measuring the discharge current from the electrostatic discharge generators.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference45 articles.

1. Practical ESD Protection Design;Wang,2021

2. ESD Protection Methodologies: From Component to System;Bafleur,2017

3. Design of an Artificial Dummy for Human Metal Model ESD

4. User Guide of ANSI/ESDA/JEDEC JS-001 Human Body Model Testing of Integrated Circuitshttps://www.jedec.org/sites/default/files/JTR001-01-12%20Final.pdf

5. Electrostatics comfort in buildings and offices: Some experiences and basic rules

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3